
AD-A116 all PURDUE UNI V LAFAYETTE IN DEPT OF COMPUTER SCIENCES PIG 9/2
EXPERTIMENTAL INVENTIGAT ION OF PROGRAMMING C OMPLEXIT Y IN COBOL.IU)
MAY A2 H E DUNSMORE DAAG29-79-C-0173

UNCLASSIFIED ARO-1675R 1-EL-A N

EEEEDhhThhE



SECUb4ITY CL A SIFICATION OF THIS PA',F rWhn Dte fere

REPOR DOCMENTTIONPAGERE~AD INSTRU.CF*oNS
REPOT DCUMETATON PGE EFORE COMPLETING FORM

IREPORT NUMBER 2OVACCESSION NO1 3 RECIPENT*S("ATALOr.NUMaER

16758. 1-EL-A VECT&PRIDC.EE

4 TITLE (and Su~btril) 5 TP FRP R EIDC ,E

Final:
Experimental Investigation of Programmning 9 Sep 79 - Mar 82
Complexity in Cobol FA- f 64 $' Dr EORT NUMBER

r-4 7. AU THOR(@) CCN'ACOR (IANNUMER(-)

H. L. junsmore DAAG29 79 C 0173

9. PERF~ORMING ORGANIZATION NAME AND ADDRESS 10PRO.RA E-EMENT PROJECT TASK(

Purdue University AREA d W'R.~ UNIT NUMBERS

West Lafayette, IN 47907

It. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

Uw L... ... Resecir- -.fl ce May 82
Post Box 12211 13 NUMBER OF PAGES

Resear~h :riJangie Fark, *4C 27-39 25___________
IC MONITORING AGENCY NAME II AOORESSWIf different from Co,,frolIing Office) 15 SF -,IRI' CL ASS. (. 11* report

Is.D&EC L ASSI F ICAT~ON FowN GRADNOH c
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of Ihe abstract *Ie..d In Block 20. If different firoc, Report)

';A

III. SUPPLEMENTARY NOTES

rhe view, opinions, and/or findings contained in this renort are tnose of the
author(s) and should not be construed as an official Department of' the Ar- y
position, .;olicy, or decision, unless so designated by ntner docur -tation.

19. KEY WORDS (Continue oci rtv~r* elds of noco..arv and Idenify Vy 050cK rrunoor)

error-proneness computer program~ming
COBOL
programming languages
language features

C:> WTIR~ACT t"atiu - mvesa shb if rtatcower ad identify by block nhmrb..)

C-) This study investigated programming activity in COBOL. Attempts were made to
identify problem areas so that improvements can be made in COBOL compilers and

LU in t" manner in which COBOL is taught. Identification of problem areas was
achieved through examining program changes made by student programmers durin'

LA_. the development of four different COBOL procrams. The data, which was collected
from a COBOL course at Purdue University, consisted of all versions of all
programs submitted for compilation by each student. Thus, the data represented

DD1473 EDIT10- OF Po I OBSOLETEUCLSIFID

Do I;:'~8 2____



une I as i I ieQi
SECURITY CLASSIFICATION OF THIS PAGE('he Data &NtMed)

20. ABSTRACT CONTINUED

a complete history of each subject's program development process beginnino with the
initial version compiled and ending with the final version submitted for
grading. All program changes made between two successive versions were
classified into four categories: COBOL-related, algorithmic, cosmetic and
report-neneration-related. This classification scheme indicates that a
significant number of changes are related to report generation which suggests
a need for support in this area. Secondly, all COBOL-related changes were
delineated into 104 error categories. This delineation suggests that there are
several problem areas in COBOL. Finally, the four categories of program
changes were observed with respect to various points in the program
development process. Most COBOL-related chanoes occur before the midpoint of
the program development process whereas most cosmetic changes occur late in
the process.

Accession For

NTIS C77A&I
DTIC TAB

Ju t iifi c t i 3: - ..

Avaii: b iItV Codes
k-- !Amil Land/or

Dist I Special

DTIC

COPYt
SpECTED

3

Unclassified

SECURITY ,CLASSIFICATION OF THIS PAGIE(OfW Data Entered) _



FINAL REPORT

(TWENTY-FIVE COPIES REQUIRED)

I. ARO PROPOSAL NUMBER: 16758-A-EL

2. PERIOD COVERED BY GRANT: September 9, 1979 - March 8, 1982

3. TITLE OF RESEARCH: EXPERIMENTAL INVESTIGATION OF PROGRAMMING

COMPLEXITY IN COBOL

4. CONTRACT OR GRANT NUMBER: DAAG29-79-C-0173

5. NAME OF INSTITUTION: Purdue Research Foundation, Purdue University

6. PRINCIPAL INVESTIGATOR: Dr. H. E. Dunsmore, Assistant Professor

7. SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT:

Research Assistants: Andrew Wang, Dennis Volpano, Paul Scherf,
and Stanley Dunn

The attached technical report includes a statement of
the problem studied and a summary of the most important
results.

Dr. H. E. Dunsmore 16758-A-EL
Purdue University
Department of Computer Sciences
West Lafayette, IN 47907



Problems With COBOL - Somc Empirical Evidence

CSD TR-371
August 1, 1981

D.M. Volpano
H. E. Dunsmore

Department of Computer Sciences
Purdue University

West Lafayettc, Indiana 47907

ABSTRACT

This study investigated programming activity in COBOL.
Attempts were made to identify problem areas so that improve-
ments can be made in COBOL compilers and in the mannr,- in
which COBOL is taught Identification of problem areas was,
achieved through examining program changes made by student
programmers during the development of four different COBOL pro-
grams. The data, which was collected from a COBOL course at I'ur-
due University, consisted of all versions of all programs submiLtted
for compilation by each student, Thus, the data represented a
complete history of each subject's program development proccss
beginning with the initial version compiled and ending with tiWe
final version submitted for grading. All program changes riade
between two successive versions were classified into four
categories: COBOL-related, algorithmic, cosmetic and report-
generation-related. This classification scheme indicates that a
significant number of changes are related to report generation
which suggests a need for support in this area. Secondly. all
COBOL-related changes were delineated into 104 error categories.
This delineation suggests that there are several problem areas in
COBOL. Finally, the four categories of program changes were
observed with respect to various points in the program develop-
ment process. Most COBOL-related changes occur before the mid-
point of the program development process whereas most cosnietic
changes occur late in the process.

Keylwords and Phrases: error-proneness, COBOL, programming langudcge.
language features

1. Introduction
There is no doubt that COBOL is an important programming lan(,,lage.. Af:

part of the early triumvirate (with FORTRAN and AIGO,) COBOl is sLill important
in business school programs and is the most widespread and intensively-tuscd
language in application programming [T'h173,Lenio79J In industry, it h,1;
weathered the storm of PL/I and even seems to be holding on in a world rapidly
filling with PASCAL-trained programmers. There are those who bclievc that AI)A



-2-

will ultimately make COBOL obsolete but the slow pace of ADA's introduction
sugg( sts that if such occurs, it will be far in the future. Thus, for the present it
appears that "real-world" programmers will continue to construct "real-world"
programs in COBOL.

Iespite COBOL's widespread use, it suffers from "human engineering
prohl ciiis" [Nels72 1. The language has some features that are difficult to use
sa I (.2g the COIRNSPONDING option) Although COBOL has been touted as
"eayil-readable', few have ever claimed that it is "easily-writable".
lurtfermore, COBOL has received little academic attention [Samm78]. Little

research has been done to attempt to identify problems with this language.

It. Purdue University, we have been conducting a research project
investigating COBOL. We arc interested in those features of the language that
may be troublesome for programmers. Our goal has been to identify such
features so that (1) they might be emphasized when teaching COBOL, (2) existing
compilers might be altered to provide better diagnostics, and (3) ultimately
some language features might be changed to make them more usable. In the
following sections of this paper, we describe a previous study of COBOL, report
the methodology we employed, and discuss our results.

2. :revious Research

ri.re have bect atltmpLs to investigate those constructs in ALGOL, BASIC,
II'WI .. lUIlR'IAN and PI,/ I which are difficult to use. Youngs [Youn'?4] analyzed

69 pri,.riixs wrietn in these languages and delineated errors into 8
Itlnv ,,nmil ly defined caLegor'ic' : allocation, assignmant, ituration, 1/0
hl miiting, other 1/, paramcter/subscript list, conditionals and vertical
tIeiritiTcr. lie found that these categories accounted for approximately 83
percent of all errors committed.

Youngs' study suggests that COBOL suffers in terms of allocation for two
reasons. The allocation of space (for identifiers, tables, etc.) in COBOL is
c-oniplex. Consider the following declarations for a 5 X 10 array in both FORTRAN
and C03tOL:

IO1?TJAN
DIMENSION ITEMS (5,10)

(IOL
01 ITEMS-TABLE.

05 ITEMS-1 OCCURS 5 TIMES.
10 ITEMS-2 PICTURE 999 OCCURS 10 TIMES.

Note that although the syntax used in COBOL to allocate space for tables is
relatively complex, it provides a greater degree of flexibility. For example, one
,.ii access an entire "row" of the table declared above in COBOL using ITEMS-1
) fmr 1= 1,2 ..... 5 Secondly, COBOL suffers in terms of allocation because there

I , Ii, I. of .omiplete implicit and default specifications. For example, in the
.,h,(- I'(.Jd.\N doclaraLion, I'TEMS is implicitly declared to be an array of type

mill,,i.rt COl, does not providC such at iniplicit type specification.
Another study conducted by Litecky and Davis studied errors and error-

piromeness in COBOL Ji0e76J. "Irror-proneness" is defined as the error
frequency for a particular language element divided by the number of usages of



-3-

that element. Errors from 1,400 runs from 73 students in a beginning COBOL
course were classified according to a scheme established from a pilot study.
The hierarchical classification scheme distinguished 132 types of errors. Thc
highest level consisted of 32 major error classes such as hyphenation and
punctuation. A relatively high frequency was found for many differcnt tyrs of
COBOL errors. For example, a missing period and a misspelled structur'l word
accounted for 8.6 and 2.6 percent of all COBOL errors respectively. iowcver,
only four error types were declared to be error-prone:

[1] Period added after the file name specified in a file description (FD). For
example

FD INPUT-FILE-NAME.
LABEL RECORDS ARE STANDARD.

The period inserted after "INPUT-FILE-NAME" is syntactically incorrect.

[2] The use of commas as word delimiters. The following is an example of a
comma used to delimit the identifiers B and C

ADD A TO B,C

The proper delimiter is a space rather than a comma.

[3] A missing period after a record name at a level 01. For example

FD INPUT-FILE
LABEL RECORDS ARE STANDARD.

01 INPUT-RECORD
05 SOME-FIELD PIC 99.

COBOL syntax requires a period after the group level item "INPUT-RECORD".

[4] Operand(s) of an arithmetic statement are not computational in nature.
For example, the arithmetic statement ADD A TO B is invalid in the context

05 A PIC 999.
05 13 PIC ZZ9.



-4-

since 13 is alphanumeric.

I,-tvk kv and l)avis also studied the content of specific high-frequency errors
and the accuracy of compilcr-generated error diagnostics. They found that 80
percent of the spelling errors in COBOL could be classified into only 4 error
classes and therefore could be corrected by existing algorithms. The 4 error
classes are

I I) One letter wrong

[21 One letter missing

j 31 An extra character inserted

[4J 'Iwo adjacent characters transposed

The diagnosis of COBOL errors by the compiler (Control Data Corporation
CO13l, compiler for the 6600) was compared with the diagnosis of a "conversant"
huniun judge. The major finding was that less than one in five errors were
accurately diagnosed by the compiler.

The idea behind their research is good but we believe that their study has
three major shortcomings

1 Il'he CO3O3L errors identified are very low-level. For example, errors such as
a missing hyphen in a FILE-CONTHOL clause are very elementary relative to
those errors that will cause problems for experienced programmers using
advanced features. Thus, COBOL errors which most likely occur at the
professional level have not been adequately identified.

2J The behavior of high-frequency errors and error-proneness has not been
observed over time. Thus, some error types that are claimed to be error-
prone me not be a problem as programmers become more experienced in
COIJOL. For example, in our study we found that the frequency for the error
type "period added after F) filename" decreases quickly.

J31 Only one compiler was considered in the study of error diagnosis accuracy.
Therefore any results pertaining to error diagnosis accuracy cannot be
generalized.

3. Procedure
Our res arch attempts to identify problem areas in COBOL by studying

program changes made by programmers who developed several different
programs A program change is defined as a textual change between successive
versions of a program [Duns60o. Each of the following textual changes to a
program represents one program change:

One or more changes to a single statement. Even multiple character
chimnges to a statement represent mental activity with only a single
,ibstract instruction.

One or more stalcments inserted between existing statements. The
c onl iguous group of statements inserted probably corresponds to the
concrete statements that represent a single abstract instruction.



r/

-5-

A change to a single statement followed by the insertion of new statcncls

The following textual changes to a program are not counted as program
changes:

The deletion of one or more statements. Deleted statements must usually
be replaced by other statements elsewhere. The inserted statemcnUL are
counted. Counting deletions as well would give double weight to such a
change.
The insertion of standard output statements. These are occasionally
inserted in a "wholesale" fashion during debugging.

Examining program changes for several different programs developed by the
same set of subjects enabled us to observe the frequency of various error types
with respect to time.

Our research involved three major areas:

I] All program changes were classified as algorilhmic, COBOL-relate d,
cosmnetic, or report-generation-related. Algorithm.i.c program changes ar.!
those needed to correctly implement an algorithm. For example, changing

IF KEY = DEPT-NO

to

IF KEY = DEPT-NO AND NOT = PREY-DEPT-NO

is considered an algorithmic change since the original statement is
syntactically correct. The change is made to correctly implement the
chosen algorithm. COBOL-reLated changes are those necessary due to
restrictions imposed by COBOL. For example, a missing hyphen in a
keyword (e.g. LINE-COUNTER) necessitates a COBOL-related change.
C'osvetic changes include the insertion of blank lines and commnts as well
as reformatting without alteration of existing staLcmcnts. Reporti-
generation-related changes include those changes necessary to genrate a
report. Such changes often involve maintaining page numbers,
manipulating carriage control and determining page breaks (The Rlport
Writer feature was not used in any of the programming assignmenLs). Some
program changes can be placed into two categories. For example, changing

IF LINE-COUNTER > 55

to

IF LINE-KOUNTER > 60

is considered to be both a COBOL-rlated and repor-t-gcneratiori-r'cliaLtd
change; COBOL-related because INE-COUNTER is a COBOL reserved word
and report-related because 60 line,; arc now de.ired rater tharn b. As an
example of the intersection between the categories of algurihnime and
COBOL-related, consider changing

IF EMP-NO <> PREV-EMP-NO



-
l ' w  

".. . .. - - - - ... . .... .. .. . . ...... . .. ... .

- 6-

to

IF EMP-NO NOT = PREV-EMP-NO AND OLD-EMP

This change is considered algorithmic because an additional condition must
be satisfied and is considcred COBOL-related because "<>" cannot be used
Lo denote inequality in COBOL.

[2] All COBOL-related program changes were further delineated into 104 error
categorics such as editing, literals, punctuation etc..

[3] Each of the four categories of program changes were examined with respect
to when they occur in the program development process.

The data for our research was obtained from students in an upper-level
COBOl, course at Purdue University in the summer of 1980. The students, who
had some experience programming in FORTRAN or PASCAL, were required to
write five programs (COBOLI, COBOL2 ... , COBOLS) as part of the course
requirements. The first program, COBOLl, was disregarded for our purposes
because it did not demand significant programming effort and represented most
sLudents' initial experience with COBOl,. The second program, COBOL2, involved
writing a le in readable form. The last three programs, which were
iipproxitnatcly '700-1300 lines of code each, involved master file updating. COBOL5
rqLqul1'Vd changing CUIBOL4 to include random access. Some COBOL features that
would most likely appear at the professional level, namely sorting and random
ac(,css, were employed in COHOL4 and COBOL5 only. Thus, we could not observe
how the frequency of program changes in these categories behave over time.

All versions of a particular program submitted for compilation were
captured for each programmer. The average number of versions submitted per
p rotrammcr ranged from 12 for COBOL2 to 53 for COBOL4. Instead of examining
Lll versions from approximately 40 programmers for each programming
assignment, a random sample of 10 programmers was used. A sample size of 10
seemed to be appropriate since 2 random samples, of 10 programmers each,
yielded similar results for COBOL2. For each of these sample groups, Table 1
shows the frequency of changes for each category and the percentage that
frequency is of the total number of changes.

COlIOL. Alporithmic Cosmetic Re rt Generation

S f f % f %
(;rout I 176 23.9 189 25.9 193 20.7 371 50.4
Grou 2 151 20.8 184 25.4 102 12.3 407 56.2

C-

Tazble 1

To examine program changes between two successive versions, a system
utility culld "SCCOM" was ueCd. SUICCOM provided a file of all textual changes
between two versions. This file was then examined manually.

I I I h .. . . .. .. . = . . . . . . . -



4. Results
Our results correspond to the three major areas involved in our research.

For each programming assignment, Table 2 shows the frequency of changes for
each category and the percentage that frequency is of the total number of
changes for that assignment. The sum of the percentages is greater than '00/.
because of the overlap discussed earlier. Note that algorithmic ehangcs iwc)ount
for only 25 percent of the changes for C01301,2 but account for ovwr () ,,r l
of all changes for the last three assignments. Ilalf of all changes on (1)(Ki,2 are
report-generation-related but for COBOL3, 4, and ' thcsc remain relativelV
stable constituting approximately 25 percent of all changes. Finally. nolce that
those changes necessitated by problems with COBOL remain relatively stable at
about 20 percent. That is, one of every five changes is due, at least in part. to
problems with the programming language.

COBOL Algorithmic Cosmetic leporL. Generatio,

f % f % f . f ____

COBOL2 176 23.9 189 25.9 193 26 7 ,171 50'
COBOL3 197 21.6 611 67.0 177 10.3 :03 22.3
COBOL4 199 19.1 701 67.3 211 16.11 276 26.:)
COBOL5 36 21.4 101 60.1 . 10 39.1 144 26.

Table2

Appendix 1 represents the delineation of COBOL-related program changes
into the 104 error categories. For each error category, Appendix I shows the
frequency of changes made due to this type of error for each programming
assignment. A blank entry in Appendix I indicates that the COBOL feature for
the error category in question was not employed in this programming
assignment. For example, only COBOL5 required random access and therefore
there are blank entries for this category for COBOI,2, COOL3 and COUOII.

For programming assignments CO[OL2-COIJOLb, ligure I shows that
COBOL-related changes are typically made early in the program development
process whereas Figure 2 shows that cosmetic changes are more frequent at the
end. Figures 3 and 4 show that algorithmic and report-generation- related
changes occur throughout the development process.

5. Discussion

As indicated in Table 2, there is a significant number of report-generation-
related changes for each programming assignment. This suggests that
programmers could most likely use some support in fyenraling reports. One
type of support already being used (not in this study) is the Report Writer
feature. A study has shown that programmers find Report Writer niakes Lm:
maintenance and generation or reports much easir I AutdcIll 1. llowever, itr
research does not suggest that Report Writr is a piximiu'a, primarily bce,14 W,
some changes involved featurcs that exist even in 16eporL Writer. icr ux411impie,
changes which involved editing were considered reporL-generation-reihted but
clearly such changes may be necessary even if Report Writer were used.



Oiir research suggcsts that the following error categories appear to be
probkc.,l areas in COBOL. However, it does not suggest that these categories are
tTrI prone. Recall that error-proneness is a function of the total number of
,iSagu, s of a particular language elenicut. Since we did not attempt to determine
tit, totod number of usagtes for each of the language features in question, we
ct,11in1t make any conclusions pertaining to error-proneness. The frequency of
piograiii changes for sonic of these categorics remains relaLively stable over

iiie ,d tLicreforc these categories appeur to be problem areas. Other
Categories show potential for being problem areas due to the relatively high
frequency of changes observed.

"ii Data-name qualification.

Thic program changes that we categorized as "data-name qualification"
involved qualifying non-unique data names. There were considerably more
instances where qualification was omitted entirely than there were
instances where it was inadequately specified. For example, in the context

01 A.
Ob Ii.

10 C PIC 99

I I).
00 1U.

10 C PIC XXX.

frequently the data name C was not qualified when referenced in the
pi'ocedure division. Proper qualification of C in this context is C OF D or (C
01' 1B OF' D) or C OF A or (C OF B O" A). The function of non-unique data
Tnamcs in COBOL is twofold; they provide increased flexibility and are
neccessary for the proper use of the CORRESPONDING option. Despite
increased flexibility, non-unique data names require qualification, and
(lual]ficaLion actually makes programming in COBOL more cumbersome.
I,'or example, consider the arithmetic statement

M UL'IIPLY QTY-ON-HAND OF INPUT-QTY
BY UNI'T-1IICE OF PARTS-RECORD
GIVING TOlAL-COST OF OUTPUT-RECORD.

I-d t-nanie qualificatoti iipp)ears only to complicaLe programming and make
lit Ii i , iti11 Ic 'C: o. ; less readable. Sinrce COBOl is an inherently

\(I, lL):;(, i.1ui;UigCe, it would miost likely not sufTer it all data names were
I'elqUired to be unique.



- 9-

[23 CORRESPONDING option.

This feature may be used to reference all fields with conmon dt 1 1i,
within two different groups [Shel'?'?]. Most prograrn ('hanies ni,,d(- i, 1,,
the CORRES1ONDING option were attempts to rdersee the lick. i,, rtl'd
within two diflerent groups. i'or example, in th, context

01 A.
05 C.

15 D PIC X.

01 B.
05 C.

10 E.
15 D PIC X,

we observed many programmers using a statement such as

MOVE CORRESPONDING A TO 13

to move the contents of ) in group A to D in group 13 However, the nt.-ndcd
move will not occur in this context since D in group B is at a diffcrent. level
than D in group A. The CORRESPONDING option has pitfalls that have eaused

experienced programmers to minimize its use. The main problem is that it
tends to create trouble when a program is changed, as virtually all
programs arc if they are used for any length of timc One portion of
program that generally changes is the forrn t (,I I c'( 1'd I, \peiIL:ii( C aS

shown that record format chaiiges very I rCqurily lvcae tit
CORRESPONDING verb to give undesired results .!.(,1I'.6 The efUrt l
using unique data names and explicitly rle crici , ( Ieiici(,dii y d, i i ,lsls
has the advantage of providing easier n naiterhtletic(- ol tire programl ,ion
reduced chance of error. Thus, it appears that C1)4130, wvor 1 not, ul[kr
without the CORRESPONDING option.

[3] Edited numeric data items LS operands in arithmetic expressions

The restriction that edited numeric data cannot be used in arithniotic
statements often causes a programmer to declare another data namc to be
computational in nature. For example, in the context

05 LINE-KOUNTER 1'l( 1/9

the statement ADD 1 TO LINE-KOUNTER is invalid since LINE-KOUhNN r!
alphanumeric. COBOl. compilers could be written to generate code I Ir,
would coerce edited numeric data in much the saie way a:; intLci: ei 11,c

coerced in real expressions in ,ORIIAN. lowever, I tic itroductluii ol
coercions Into a progranm iilngllnii v, og nlmul h, ,I,,,,' with r' :ali ,)Illi
discretion ['Ionn6l]. lor uxcliiple, consider tire nhieliaKtrion

05 FIELD PIC X.



- 10-

he bit configuration of FIELD, which occupies one byte, can represent a
dl,it or some other character SL :!h as a letter. Since edited numeric data
iL,. m iarc a subset of the set of all alphanumeric data items. it would be
p,,ible to extend coercion to the set of all alphanumeric data items. Such
,i .xLcnsion would allow FIE",LD to occur as an operand in an arithmetic
cYpression lowever since FIELD can represent a letter, coercion would
allow computation of the arithmetic expression to continue and possibly
produce bizarre results Programmers normally do not welcome error
inussages but a message that helps in locating a bug is far more useful than
meaningless output.

r4] Literal continuation

hie program changes related to literal continuation involved correcting a
misplaced single quote or providing a hyphen in column seven. The
frequen Cy of changCs made due to invalid literal continuation decreases

I .Fi dly aftr' (Ihi :- L'Id programing assigninu-it, COBOL2 (see App rndi
1) This rapid dechne : due to the abandoincnt of the technique used to
.iltirluc hLeraL>. Programmers avoided this technique by adopting other

mc-ins for declaring lengthy literals. For example, some programmers
placed the entire literal on a new line whereas others partitioned the literal
into smaller segments.

15J IF"-ELISE pairing convention.

P, -i IIp i'. l IIII tu . fo, lllul ,ImI I Of 4innll tUlty In a )rogrt inlllig language
is the dangling EISE. Consider the conditional

IF c 1

IF c,

s2

ELSE

s3 •

e azmple I

I i.s riot. clear to which IF' the ELSE corresponds. Without changing the
for inal definil.ion of the syntax ol CUIlOL, the ambiguity can be resolved in
one of two ways. The first approach involves introducing the keywords
I.IGIN and END (see extunpLe 3). The second approach, which is used in
COI3OL, is to adopt a convention. The one used in COBOL is that in a nested
I,' statement, the first ELSE clause corresponds to the innermost IF



-11-

statement [Shel77]. Consider example 1. If s3 is to be executed when e. is
false then "ELSE NEXT SENTENCE" mTust be inserted before the 'XIstIIp,
ELSE since the ELSE which currently exists corresponds to the. iinermst I1"
(see example 6).

[6] Dependency upon the period to terminate a conditional

Since COBOL is very sentence-oriented, the Il,.WL'11 ';iL of a perild LII r ;I
statement is natural. IIowever. the use of p(,rod:s ifler ti~tceivnti 0 I
conditionals will yield undesirable results. At it r'(,tlt uf thc I .tr i .

upon the period in an I' stateLment. progratiiilem':; oil ie rL-(l'd iLiIf 1, hi1,,
debugging programs only to di:cover the cxi:; tic -c (A in xtr,, (!1 1,( riud
in an IF statement. The following conditional illu.LrALS the probkmi ol
period dependency.

IFc 1

READ file-name
AT END s 3

si

s2 -

example e

The programmer is forced to put a period at the end of the imperative
clause s3 so that s, and s2 are not executed upon an end-of-file condition
only. However, placing a period after s. causes s, "nd s,, to be executed
independently of c because the period terminates boththe AT END clause
and the conditionai. Clearly, an "ENDIF' or perhaps an "ENDAT" coiistruct
would eliminate the dependency upon the period. However, until such a
construct is added to the language, COBOL instructors should emphasize
such potential pitfalls.

There have been attempts to simplify COPOL programming by making
COBOL extensible; i.e., allowing the syntax and semantics of COBOl, to be
changed. One of the earliest and most commonly proposed schemes for
language extension is the macro definition [Grie7lAho 721. Already in use, are
two macro preprocessors MetaCOBOL and COBRA which enhance COBOL,
[ADR.76,Hami73]. The processor need not precede compilation. Triatict t il.
built a macro facility into a COBOl, compiler [TriaBO]. This compiler is blieved
to be the first compiler with a builtin macro facility capable of recognizig
macro calls with arguments. An example of a macro call specified in a C0HO1.program is "CSlt". This call initiates execution of a niatre wh)ivh sirnl~lY rvlltcos

the call by "COMPUTATIONAL SYNCtIRONIZED IRIGI IT". The COIJOL macrr acilty
could conceivably be extended to provide support in the area of nested



-12-

conditionals lor example. a programmer could override the convention
adopUd for I-ELSE pairing by using the keywords BEGIN and END. For

x0npl)Ic, assuming s3 is to be executed if c I is false, example I could be
rewritLtcil as

IF c!

BEGIN s,

I'.' c 2

lJ'GIN s2 YND

END

ELSE BEGIN s 3 END.

example 3

.uppose there were an "ENDI] construct, then assuming s 1 and s2 are to be
'xcc itkd if c is true and independently of the inpcrativc clause, example 2

could bc rewritten as

IFC

READ file-name
AT END s 3 .

3,1.
S,

s2•

ENDIF

e'xample 4

1'o utilize a macro faciliLy, a programmer could specify a macro call such as
"CONDITIONAL'. For example

CONDITIONAL

IFIc

HEGIN
S
1



-13-

IF C2

BEGIN s2 END

END

ELSE BEGIN s3 END

ENDCONDITIONAL

The entire conditional specified between "CONDITIONAL" and
"ENDCONDITIONAL" would be treated as a by-value parameter subject to
interpretation by a particular macro. This macro would goncrate starLdard ANSI
COBOL code for the conditional spccified. For example, the code gcncrUtcd iur
example 5 would be

IF c

sI

IF c 2

S2

ELSE

NEXT SENTENCE

ELSE s3.

example 6

6. Smnmary
Since COBOL is a widely used language, there is a need to identify its

problem areas so that improvements can be made in COBOL compilers and in
the manner in which COBOL is taught. Such improvements could yield a
reduction in the number of errors committed by COBOL programmers.

Attempts have been made to identify error-irnducing fcturcs in COIJOI,
[Litc76,Youn74]. However, the error frequencies for certain COI3Ol featlures have
not been observed with repect to time. Our research attempted to identify
error-inducing features (problem areas) by observivig the frcquceicy of errors
for various features over time. Thus the rcaturc.s we bave idlentifimd as problcui
areas are likely to be error-inducing for expcrcticrud its well as ntovicec Ujul,
programmers. Our study suggests there are at least six problem areas in COUOL:



14-

[I Data-name qualification

[ 21 CORRESPONDING option

[31 Edited numeric data items in arithmetic expressions

[41 Literal continuation

[5] IF-ELSE, pairing convention

161 Dependency upon the period to terminate a conditional

lurt.hermore. we have suggvested approaches that may tend to eliminate
sonc or these problem areas. For example, we feel that non-unique data names
,and the CORRESPONDING option could be eliminated. Edited numeric data items
OceuriMg in arithmetic expressions could be coerced. A macro facility could be
used to alter the syntax of conditionals in COBOL so that errors related to
conditionals can be reduced.

Undoubtedly additional problem areas exist in COBOL. For example, we
rould not observe the error frequency for features such as the COBOL sort
faclity and random access since these features were not used more than once
by our subjects. Hence, there is a need for further research to observe the
error frequency over time for more advanced features. Upon identifying those
error-inducing features, additional improvements can be made with respect to
COBOL compilers and the teaching of COBOL.

7. Acknowledements

WV., wish to thank Andrew Wang for his effort in the time-consuming task of
,olh,: tIig the data for our study. We would also like to extend our appreciation
,o 13i1 Ward and Torn Putnum for aiding in the manipulation of data and lastly to
lie irnstrucl.or of the COOIL cour:rr Steve Booth and his students for
p.ItI IcI').Im p. II I III, . l 1V "lThr: r ':wixrrlh wiri ::tippnrl.rd by Lh U ,S Army,
(, ,-II It lJ 'I-it-C-:U ':. Purdue University CompuLing Center and the
PLu|'due Jnrversfity Departient of Computer Science.

i



-Z16-

SIGPLAN History of Programming Languages Conference,

Los Angeles, June 19'78, SJGPLAN Notices 13, 8

pp. 121-160, August 1970.

{SheI?7J Shelly, G.B. and Cashman, T.J., Introduction to

Computer Programming Structured COBOL, Anaheim Publishing Co., 1977.

j'enn8l I Tennent, R.D., Principles of Programming Languages,

Prentice Hall International, 1981.

Triabl) ITriance, J.M. and Yow, J.F.S., "MCOBOL -

a )roLotype iacro facility for COBOL", Comrn ACM, 23. 8

)p -132-139, Aug. 19B10.

Yntun eI I Youngs, l'.A. "I lutnan errors in programming", In. J.

.ahn-Machine S'tudies, 6, pp. 361-376, 1974.

~kCZJJ AM~~ MLANs-aoT 12UM



Appendix I

Progran

COHOL2 COBOL3 COLOL4 WBUL5

Error Categories 
f

1. Structural Keywords
A. Misspelling

i. ENVIRONML T 0 . 0

2 DATA DIVISION 2 1 0 0

B. Missing Keywords
1. Data Division

a. FILE SECTION 0 2 1 0

b. WORKING-STORAGE SECTION 1 0 0 0

c. PICT HE 0 3 2 0

2. Procedure D)ivision
a. STOP RUN 0 0 o

b. OPEN 0 1 0 0

c. CLOSE 1. i 2 1

d. INIL'IvouifpLr of OPEN 0 0 3 0

2 Sentone Structure
A I nival id I',l) IM v 0 C 3 0

B. DaLa-riirw qualificatior.
1 . ChjJ t Led 0 5 37 0

2 Insufficient 0 0 3 0

C. Invalid assigrment 0 2 0 0

. Misspelling
1. ASCFN.)IN 

1 0

2. CORESPOND I NG 2 0

3. Ed i t irw.
A. Zero suppression

1. TrucicaL:on of higher
order digits 4 0 1 0

0. diLing synbo!s
1. ./V 9 4

2. -/S b U 0 0

3. S used for zerc

suppression 0 0 0

4. H used instead of ,SPACES 0 0 0

E diting .yabol in PiCTUIF.
riot i iLvrdud to edit 3 0 0

c. Use of edited itii in



CS Dept. VAX 111798 UNIX Thu Apr 1 12,37:44 ISOZ dev Dennfa% Vopno M,%rH'4J,.

d
d

dddc~d main mm v v
d d m mn m v
d d mn 11 n . v
d d m mn A v v

i n . v
ddidU m



-2-

arit hmtlc 7 2 5 0

4. CfORIOFTDIN verb
A. Irmproper use 28 0

5. Format
A. Margins

1. l;eft of column 8 0 -

,i. Right of column 8 0 9 12

3. Left ef colxnn 12 4 ' 0
4. Right of colurn 72 3 4 1 0

6. Reserved words used as
identiflers
A. PAGE 1 ( 0 0
l. PAGE-COLNTER 4 0 0 0
C. LlNE-WUNTER 0 1 0 0

7. Data description
A. Formnt

1. Missing keyword ALL
in VALUE clause . 0 0 0

B. Class
1. Alphanumeric/Nuxeric 2 1 3 0

C. Spacing
1. Space between type and

length (e.g. PIC X (18)) 0 b 0 1
D. Level nun-ber missing 0 0 1 0

8. Punctuation
A. Period added

I. Within CLOSE statunent 1 0 0 0
2. After FD file-nmw 2 0 0 0
3. After VALUE keyword 1 0 0 0
4. Within OPEN statwernt 1 0 1 0
5. Before end of file

description 0 3 0 0
B. Period missing after

1. SOURCE- APU1TR 1 0 0 0
2. OBJ ECT -CMITER 1 0 0 0
3. Croup level iten 18 '7 3
4. PIC'IURE clause .1 3 3 ?
5. VALUE clauqe 4 2 2 0
6. Program name 0 1 1 1

7. FILE SECT I ON 0 1 0 1
8. Paragraph nwm 0 0 4 0

9. Hyphenation



A. Missing in
I '.;FI Al-NAMvES 1 0 0 0

'I. F)I!J IZ,- CTAMPUTfER 1 0 0 0
4. IIIUli-VALUES-;: 0 20 0

[Am A:I.T1 13
II. '\dde-i in

WOR M'~I NG -STFOWE -SECT ION 0 1 0 0

10. Ltteralq
A. 1I it I~ rot i nua i on

i Mi'pi -iced hyphen or
single qiintLc 11 0 1 0

B3, Alphriiiuric/Nlrric
(c~g PIC 99 VALUE '20') 5 3 0 0

C. Aiph-knuT ric literal
V!,sing quotes 6 4 0 0

2. IKngtii exceeds size
of PfI', ~ 0 12 0

3. Itivalid detimiter 0 4 0 0

11. Invahid use of figurative
constant!
A. S'PACLN 20 0 0 0

12 Condit iornils

* NI i'I III lilt 1i 0 0 0

i~r'v12 0 0 1
:i !r~,~'ui.w~r of AND/OP 0 6 0 0

H3 ~~ i (I ii, onid operator
/ t;QUI./>b 0 00

2 . i~e~'nu. ' vcecdinfy,/
I o1 1I I r14! i9-e I at i "fld I

p. ra or 2 1 0 0
I-' A < '11 PA i3) 6 0 0

Ii 'i;Ig~)-r~I6 2 2

'('I' ~iI 0') arly
LoeI uonditional 8 8 6 2

iietd0 4 2
i7 Abbr i~ -it iu

arj'. nd relat ion
1mLd in cr~powid

eoii'J iti onti which i nvolv es
'k clios tesL (e.g.

13. Write statrtivrit. ADN~C



-4-

A. Write VORKING-STORAGE record 10 3 0 0

L Writr statnmnts with and
witlhut ADV.kNCING option 3 0 4 0

14. Read statemnt
., 4' ND clause omitted 1 0 1 0

[3 Conditional within inperative
ci ause 3 4 0 0

C. !MO is not last stateLnt
within conditional 0 43 0 0

D. W)AD file-narm- INTO
file-nIm3-2 0 4 0 0

E. READ file-riam TO record-narm 0 4 0 0

15. Level 80 iirxm
A. PICTURE clause at level 38 0 0 2 0

BI Quantity MONEd to a level 88
I tin

C. Luvo l 0 txI i m OVld O .I ! U.

D. Data nmie with PICTUE clause
used ;s switch 0 0 0

16. Redefinitioni
A. At a level other than 01 did

not have the stov nurbcr of

bytes as the itun being
redefined 0 2 1 0

17. Tables
A. iubscripting

1. No space separating
data name and left
parentheses of subscript 11 5 0

2. Subscript missing 0 5 1

3. Subscripted data nrm used

as subscript 1 0 0

4. Data nmi without OCCURS
clause is subscripted 0 1 0

B. OCCURS clause
1. At a level 01 2 1 C

2. PIC X(40) OCCURS 40 TIMF-/

PIC X OCCU 40 TIMES 3 1 0

C. Indexing
1. Use of an index other than

the index defined for that

tablc 0 5

I). S.ARCII verb
1. SI'AEH the incorrect

data nam
G. Level structure



nptpr I 'vvI rurrtivr 0 0 .

LS SO1T v er 1
M /l'-,I 1 0
IAD:.\I-I1VRN 2 0

\lPt;ITu1IPJT procedure is

I~'~~'~gih-a~SNC'ION 20

Q1\*rlI- p EC I ON 10
t; Ii~ fi : ki'v 2 0

;'or sI,' 3i I1

9 1%'.~l w .

A\ 1dIV .- i~ it dIiv is ion
nii id MJ.'7I clIause



cl-I . 3 I-)0

7)
_ CnI"THMIC 

,,

-COBOL5

\ OBOL4

.,...... 
C/ OL

3) 5() 70 9 100

o OF TOTAL COMPILED

F12.

9D

C bJTL -

.HANGES 5,j

\,~

\~

3.') 50 70 90 100

% OF TOTAL. COMPILED



FH1;. 2 I00

2")

COSMLl IC/

CHANG. // '

/ I '

/ ,,

I /-
I " __ _ __ __ __ _ __ __ _.,__ __ _

--- r-",' -- \" -, ,

3- 50 70 90 I00

o OF TOTAL COMPILED

FK

c~

1" 0 30 507Ig 0

YEP..R, - T C
RE LAK 1-

//\ _-

I0 50 50 70 90 tOO

%o QF TOTAL COMPILED




